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Preface

These notes cover a series of six lectures which I gave at the Uni-

versity of Maryland in December, 1973. My aim in the course was to head

straight into the subject and prove a few theorems, not to give a complete

survey of 3-manifcid theory. However, I started with an introductory lec-

ture to set the scene in the problem of classifying 3-manifolds.

The main theorem of the course is Waldhausen's important result that
homotopy equivalent, closed, sufficiently large 3-manifolds are homeomorphic
and his varicus extensions. 1 do not give Waldhausen's proof but present
his results as following on from a proof of Kneser's Conjecture and l1ts
extensioné to the case when the surface is not a sphere. These results
demonstrate the power of scme of the methods used teday in 3~-manifold
theory. The course ends with a proof of the coherence of fundamental
groups of 3-manifolds and some examples of 'wild' group action on R3 .

Iﬁ'order not to obscure the simplicity of the methods used, and of
course to save time, I restricted myself to the orientable case in much
of the proofs. Analogous results do hold in general and the proofs fol-
low the same plan, bul they need more work at some points. A4 far more
serious gap for a course claiming to be an introduction to 3-manifolds
is the omission of proofs of the Loop Theorem and Sphers Theorem. This
had to be so for obvious reasons of time.

411 the resulis and proofs here have appeared in print before.
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Chapter I. Introductory Lecturs

The basic:problem of manifold theory is that of classification., I
want to start by discussing why dimension 3 has a special position in
this problem., Of course, there are really three classification prchblems,
one for each of the categories of smooth, piecewise-linear and topological
manifolds. We call these categoreis DIFF, FL and TOF regpectively.

In the case of dimension %5 or mere, we now know from the work of
Eirby and Siebemmenn [11], that the PL and TOP clasgifications of manifolds
are different. In the case of dimension 7 or more, we know tﬁat the PL
and DIFT classifications are different [10,14]. However, in dimension 3
or less, all three classifications are the same, The original proof of
this fact for PL and TOP in dimension 3 was by Moise [17]. It can also
be proved using the ideas of Kirby and Siebemmann. It wiil usuelly be
convenient to use the PL category in proofs. Further the classification
of manifolds of dimensions 1 or 2 is complete even in the non-compact
case [20,22]. The fact that we know all about submanifolds of 3-manifolds
whicﬁ are of codimension cne plays a key role in the theory.

One other important special property of dimension 3 is the following.
Any countable group is the fundemental group of a 4-manifold and any
finitely presented group is the fundamental group of a closed 4-manifold.
Heither of these statements is true ir dimension 3. This imblies that
the classification protlem in dimension 4 or more is not solvable even
if we resgtrict our attention tc compact manifclds because the classi-
fication of finitely presented groupsis not possible [13]. By this one
means that there can be no algopithm for classifying manifolds. Ti is

not known whether or not the clacsification problem in dimension three

is sclvable.
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For the rest of this lecture, I want to set the scene for Imoking
at the classification problem in dimension 3. I will consider mainly

compact, orientable 3-manifolds.

Two good classes of examples 1o keep in mind are lens spaces and

knot complements. The lens space L(m,n) , where m and n are co-

prime, is the quotient of the 3-sphere 83 by a free Zm—action. This

action iz defined by taking 83 = {(ZI’ZE) Pz, is & complex number and

2mifm  2mi/m

2 2. .
lzl| 4—|z2| = 1} and mapping (zl,zz) to (e 756 The

22)
fundamental group of L(m,n) is Z By a knot complement, T mean

83 with the interior of a closed regular neighborhcod of a knot removed.

1
Thus the boundary of s knot complement is a torus 5 x S1

One can construct more examples of 3-manifolds in various ways.
First, if G is a subgroup of n{MS) , then M has a covering space X
with ﬂl(X) =G . But as X is a covering space of M , X must also

he a 3-manifold. Another method of construction is to take the connected

sum of {two 3-manifolds Mi and M2 . This we denote by P&#Mé It

is defined by choosing twc 3-balls B1 and 82 in the interiorsoef M1

and M We then remove the interior of Bi from Mi and identify

2

the two beundary spheres by s homeomorphismto obtain MI#M2 . Note that,
strictly speaking, Mi#Mé may not be well-defined as there are two non-
igctopic homeomorphisms of 82 . Van Kampen's Theorem tells us that
nl(MI#MZ) = ﬁl(Mi) 3t ﬂl(Mg) , because ﬂl(Mi) = ﬂl(Mi-Bi) as M, 1is
3-dimensionsal.

Yet another particularly interesting construction is to take two knot

complements and glue their boundaries together by a homeomorphism, If

we choose complements Kl and K2 of non-trivial knots, then
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(B = o (B ®,

Now fer any two knot complements Kl and K2 s there is s homeomorphism

nl(K2) , because wl(aKi) injects into ﬁl(Ki) .

h: 3K, 23K, such that KIUhY ig a homology 3-sphere. Thus we have

1 2
a huge supply of homology spheres with infinite fundamental gToup.

Let us return to the connected sum operstion for a time. We observe
that for any 3-menifeld M , M#SB is homeomorphic t¢ M . Thus S3
is a unit in the abelianmonoid formed by homeomorphism classes of 3-mani—
folds., We want to consider the question of‘f;ctorising in this monoid. We
say a 3-manifold H 1is prime if whenever M = Ml#M2 then one of Ml or
M2 is 83 « Alexander proved that 83 is prime [1]. We can now state
the following result proved by Xneser [12] and Milner [15].

Theorem 1.1 A compact, orientable 3-manifold M can be factored uniguely

(up to order of factors) as a finite connected sum of prime 3-menifolds.
It is convenient to make a further definition. We say ks is
irreducible 1f whenever we embed 52 in M then 82 bounds a 'B—ball

D’ in M

Lemma 1.2 If M isg a'compact, orientable, prime 3-manifold, then

M= 8% 8% or M is irreducible.

Proof: As M is prime, every 82 embedded in M which separates M
btounds a 3-ball. Suppose M admits & non-separating 2-sphere S s
which we can suppose embedded in £he interior of M . Choose a regular
neighborhood V = Szx[—l,l] of 5 and an embedded path ' in M-V

from a point of Sle—l] to a point of ngll J . The sphere §°
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which ig the connected sum of ng{—l} with Szxil} along the
boundary of a regular neighborhood U of T c¢learly bounds UUV in

3

E . Ii follows that M = UUWUD" and M must be homeomorphic to

Sl><S2 « In generai, M might bs the non-trivial 82 bundle over

Sl ,but we know M tc be orientable,
Thus the classification of compsct orientable 3-manifolds reduces
Lo the classification of compact orientable irreducible 3-manifolds.

We now consider such a manifold ¥ . There ars two cases according to

vhether nl(M) is finite or not. We let M denote the universal

covering space of M

Case 1 nl(M) is finite

If M 1is not closed, we censider the exact sequence Hz(M,aM)4
Hl(aM)-’Hl(M) . We know Hl(M) is finite and Hz(M, aM) = Hl(M) =0
Hence Hl(aM) is finite. If follows that oM 1s a union of 2-spheres
ard so M=D" . (Iizte the use of the classification of surfaces here).

If M is closed, then M is also closed. Also nl(ﬁ) is trivial
and nZ(M) = H2(ﬁ) = Hl(ﬁ) =0 . Hence M isa homotopy 3-sphere.

Thus in the case of finite fundamental group, the elassification
oroblem reduces-to solving the Poincare Conjecture and finding oul about
free group actions on homotopy spheres. Milnor [16] has 1isted the groups
which can act freely on hcmotopy 3-spheres.

We observe that even neglecting the Poincaré Conjecture the class-

ification may well be very complicated. For there exist lens spaces

which have isomorphic fundamental groups yet are not homotopy equivalent [37].
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Also there exist homotopy equivalent lens spaces which are not homecmorphic

[21,37].

~

theorem tells us thet M is contractible. Therefc:- M is aspherical.

' We now turn to the other possibility. At this point we must quote
the Sphere Theorem of Papakyriakopoulos [18] and Whitehsad [36].
' Sphere Theorem If M° is orientable and nz(M) is nen-zero, then
I there exists an embedding of 82 in M which represents a non-zero E
element of nz(M) . E
l It follows that if M is irreducible, then ﬂ2(M) =0
I Case 2 m (M) ig irfinite
M is net compsct and so HB(M) =0, Also H](ﬁ) =0 ard HE(M) =
l (M) = m,(4) =0 . Hence Hi{ﬁ) =0 for all i>0 and Whitehead's

ie. m{M) = 0 for i>1 . This gilves us new informastion about ﬂl(M) .
" In particular, WI(M) has cohomological dimension at most 3. Also

nl(M) must be torsion free, for if Zn were a subgroup of mw, (M)

1
there would be a covering space X of M with ﬂl(K) =2, . The space
X would be aspherical and 5-dimensional, which is a contradiction, as the
hemology of Zn is periodic with Period 2.

We say that M is a K(7,1) . i.e. an aspherical space whose
fundamental group is n . The fact that any irreducible orientable

3-manifold with infinite fundamental group is a K(m,1) goes a long way

toward explaining the very special role that the fundamentsal group plays

in dimension 3,

We close this discussion by observing that in all known exasmples M

is B if M ic closed, and otherviee N is D witn some of 3D

ramoved,
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Tn some ways, the classification problem in this case seems more
tractable than in the first case. For example, Waldhsusen's results
(Chapter IV) suggest that homotopy'eQuivaleﬁt closed orientable irreducible
3-manifolds with infinite fundamental group muet be homeomorphic. As

these manifolds are K{w,1)'s, they are homotopy equivalent whenever

their fundamentsl groups are isomorphic, thus they are determined by
their fundsmental group alome. However, in contrast to the first case,
we are very far from characterizing those groups which can oceur as
the fundamental groups of such mgnifolds. If we restrict the groups
to be abelian, nilotent or solvable there is a complete classification

.[2,5,32].

There are a collection of results, which T call structure theorenms,
which have a mainly group-theoretic hypothesis and a geometric conclusion .
We give some examples below.

Knéser‘s Conjecture, which is proved in Chapter IIT has the hypothesis
that MB is closed with ﬁl(M) = Gl* G2 and the conclusion is that M

15 Ml#M2 with ﬂ1(Ml) = Gi . This sort of result gives information

about the manifold HM gnﬂ hence gives new information about ﬂl(M) .
Thus we obtain some information, in rather special cases, apout the
structure of ﬂl(M) .

if M3 is a bundle over Sl' with fibre a surface then wl(M) is

an extension of & surface group by 2 . tallingst fibtration theorem

[26] is a converse to thiswethe key hypothesis being only that nl(M)

is an extension of some Tinitely generated group G by Z . Thus in

this thecrem G +turng out to be a surface group.




=

1 and F2 such that

F = F, and the natural maps nl(Fi) -+ Trl(Mi) are injective and if M

Ir Ml and M2 have boundary components F
is obtained by gluing Fy to F, then nl(M) = nl(Ml) %Wl(Fl)nl(Mg) .
In Chapter III we prove a converse of this. This is a generalization
of Kneser's conjecture. If M = sz S:L for some surface F then
Trl(M) = nl(F)x Z . Epstein [3] has proved a converse of this where

the group-theoretic hypothedis is only that nl(M) = Ax B and is infinite.
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Chapter II. Group Theory — theorems of Kuros and Grusko

As we pointed out in the previous chapter, the fundamental group
plays a very important role in 3-manifold theory. The sort of group
theory which is needed is that part of the subject to do with free groups,
amalgamated free products and cochomology of groups. I want to present
here proofs of Grusko's theorem and of the Kuros subgroup theorem both
with a topological audience in mind. I do this partly for completeness
and partly because the methods of proof will be used on many other
cceasions.

The basic idea in these topological proofs of group theoretic results
is that given & presentation of a group G , there is a corresponding 2-
dimensional CW-complex X with ﬂl(X) =G . We give X one O-cell,
and the l-cells of X correspond to the generators of G s the 2-cells
of X correspond to the relations of G . Of course, one needs van
Kampen's theorem to do this which is clearly irrelevant to a group
theoretic result. One can set up these proofs more abstractly in terms
of groupoids to get eround this [9].

Whenever possible; I will suppress base points. The reader can

insert his own!

Kuros subgroup theorem

If H is a subgroup of G = A * B » then H is the free product

of a free group with subgroups of conjugates of A4 or B
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Corollary 2.1 If H dis indecomposable, ie. H 1s not a free product,

then H lies in a conjugate of A or B or HZ Z

Proof of the subgroup thecrem

Let X be a simplicial complex with nl(X,e) = 4 vhere e is a
vertex of X . Let Y be a gimplicial complex with nl(Y,e') =B
where e is & vertex of ¥ . Let K be the union of ¥ and Y
and a l-simplex 7 where the ends of the l-simplex are identified
with e and e’ . Then ﬁl(K,e) =A*B . If HC G, then
L) for scme covéring space L of K with projection map

H = nl(

p:L*X . Now inside L we have p"l(X) which is a covering space

of X and so consists of various connected covering spacesof X .
Similarly for p_l(Y) . Finally, as E is simply connected, p’l(E)

is a union of ccpies of E . Thus L Jlooks like a graph with covering
spaces of X or Y &t each vertex. The base point of L is a point *

such that p(*) = e , and the result is now clear. We get a free group

ceming in if the graph is not a tree.
We now proceed to.a proof of Grusko's theorem which is a much more
difficult result, needing a more subtle proof. The proof we give 1s due

to Stallings [27].

Grusko's Theorem Let F be a finitely generated free group, G = Gl*G2 R

and let f,: F?G be an epimorphism. Then there are subgroups F1 and

F cf F such that F=F

5 ; ¥ F, and f*(Fi) =G, .

1
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Corollary 2.2 If w(G) 1s the minimal number of generators of G ,

then p(G) = p(Gl)ﬁ-p(Gz) . In particular each G; is finitely generated.

Proof: This corollary follows because p(F) = p(Fl)ﬁ-p(Fz) , which

can be proved by abelianizing.

Corollary 2.3 Any finitely generated group G is a Tinite free product

of indecomposable groups. The factorsin such a decomposition are unique
up to isomorphism and order of the factors. Further thoge factors not
isomorphic to 2 sre unigue up bto conjugacy in G

Proof: The existence of such a decomposition follows from Corollary 2.2.
The uniqueness results all follow from the Kuros subgroup theorem

and Corollary 2.1.

Proof of Grusko's Theorem

There is a 1-complex K with nl(K) - F apnd a 2-complex L with
nl(L) - ¢ and a simplicial map f: K2L, guch that f,: ﬂl(K)-’vl(L)
is the given map f, . We can choose L to be the union of Ll s L2
and a l-simplex B , a8 in the proof of the Kuros subgroup theorem.
Thus ﬂl(Li) =Gy -

Let v be the midpoint of E and let us change notation slightly
50 that Li denotes the closure of a component of L-v . Note that
f-l(v) cannot be empty unless G OT G, is trivial in which case the
Y

result is obvious. Otherwise our aim is to obtain f (v) equals a tree T

in ¥ . In this situation we would have T separating K dinto two com-

ponents _hl and K2 with f(Ki)C:Li
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Let F, = nl(.Ki) . Then nl(z{) = nl(Kl) _*WI(T)ﬂl(Kz) =F * T,
and f*(Fi) = G; which is the required result.

We now consider the general situation. By a homctopy of f , we
can suppose that nf_l(v) consists of finitely many points because K
is I-dimensional. (Observe that this is the only point where the
hypothesis that F 1is free enters the proof.) Assuming that f_l(v)
is not connected, we are going to describe a method for replacing the
given situation by another in which the new f_l(v) has less components.
These components will be trees and not necessarily points anymore. So
what we really have to do is to show how to reduce the number of com-
ponents of f_l(v) when each component is a tree. Once we can do
this we can repeat until f_l(v) is a tree in K and the result will
follow.

We now come to Stallings method of arc-chasing, which we apply to
the situstion where © 1(v) is a disjoint union of at least two trees.
Choose two distinet components A and B of fil(v) . Choose a path
I'"in K from some point e of A to some point of B . Bya
path we mean simply a-map I2+K , and not necessarily an embedding.
Then f(I"") is a loop in L based at v . As f,: F#G 1is onto,
there is a loop y in K based at e with f(y) homotopic to f£(I*)
We consider the path I' = F'QJ' from e in A to some point of B .

Clearly f£(I') is a loop in L based at v which is mull-homotopic.
We can suppose that [ 1s simplicial. Thus we can express [ as a

union of subpaths T T such that the ends of each Fi lie in

120"

f-l(v) and f(Fi) lies in L, or L, . Further we can suppose that
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the f(Fi)'s alternate hetween L1 and L2 + Note that this means
that T, may meet f_l(v) in its interior but this does not matter.

Tet 'gi denote the homotopy class of the loop f(Fi) in
nl(L,v) =G . as P(1) is null-homotopic, we have the eguation
8185 «ov g, = 1 in ¢ = Gl* G2 , wWhers the gi’s lie alternately in -
Gl and G2 » This implies that some g; edquals 1. Let the components
of f-l(v) in which the two end points of I. "lie be P and @ ,

If P=Q, then we can change T to I'" bty removing Fi and
inserting an appropriate path in P . Clearly this new path [™*
Joins the distinct components A and B of" f_l(v) and f(I'") ig a
contractible loop in L . Also ' is a union of only {(n-1) sub-

r I« Thus if we repeat the above construetion

i-1°73417°"2"n

enough times, we must arrive st a subpath Fi of I' which joing distinct

paths [ ,...,T

components P and Q of f_l(v) , and which hags f(Fi) as a con-

tractible loop in Ll or L2 . This ig what Stallings calls a binding
tie.

We now replace K by a new complex Kl described as follows. Let

D denote a 2~-disc and divide its boundary into two ares a and B with

common end points. We can define a map f;2 DL such that fl(a)::f(Pi) s

_1(

fl(B) =v and f v)C3D , because f(Fi) is & mull-homotopic loop

1
in Ll or L2 . Let Kl be the urnion of K and D with a ldentified
to Ti in K and define fl:Kl-*L by setting fl equal to f on K .
Clearly K1 deformation retracts to XK . Also fii(v)rifpl(v)LJB s

which is a union of trees and has one less component than f_l(v) .
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This completes the reduction step and hence the proof of the theorem.
We assume the reader is familiar with the amalgamated free product
construction of groups written A *CB . This is the fundamental group
of a sultable union of two spaces with comnected intersection. We will
also want tc use the Higman-Neumann-Neumann (HNN) construction, which
comes from one group A and two embeddings io and i1 of a group C
into A . The resulting group, written A*C s is the fundamental
group of the union of a K{4,1) with K(C,1)xI , where we map K(C,1)x {0,1}

to K(A4,1} corresponding to i, end i, . The group A *, has

1 C
-1

presentation {A, & : s io(c)s:fi](c),for all ¢c€C} . Tt is a fact

that A is naturally embedded in 4 *G s but clearly A does not generate

it,
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Chapter TI1 Splitting Theorems

The Lioop Theorem and its extensions play an essential role in all
the theorems we consider here. We will state the Loop Theorem without
proof and sketch proofs for the extensions we need.

We say a map f : M2 N of manifolds is proper if f_l(aN) = M

We say that a connected surface F embedded in & 3-manifeld M is

incompressible if the natural map Wl(F)->nl(M) is injective. If F
is not connected, we say that T is incompressible if every component

of ¥ is. Otherwise F is gompressible.

Loop Theorem (Papakyriakopoulos [19], Stallings [28])

If F is a boundary component of M3 and is compressible in M,
then there is a properly embedded 2-disc D2 in M with ach:F and

aD2 is egsentizl in F

The following extensions of the Loop Theorem are due to Stallings [26].

Corollary 3.1 If F is a compact surface, properly and 2-sidedly

embedded in M3 , which is compressible, then there is a 2-disc D

embedded in the interior of M with D2(}F = aD2 essential in F .

Proof: First cdnsider the case when F 1is connected. Remove all the
boundary of M , then cut M along F , to get M” with two copies
of F as 1ts boundary. One of these copies must be compressible in M’
by van Kampen'stheorem and facts about amalgamated free products. The
result follows.
If F is not comnected, we can apply the above to a compressible
2

comporent ¥, of F to obtain DPcM with aDc R, but D° may
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meet other components of F . Put D2 transverse to F-F , and

A
consider an innermost circle C of D2F]F . Of course, C bounds
a sub-disc E of D ., If € is essential in F , then the 2-disc
E 1is the required 2-disc. Otherwise C bounds a 2-disc E” in F
and we can replace D by D-E+4+E” to reduce the mumber of circles in
DNF . By repeating this process, we must arrive at a 2-disc which

meets F only in its boundary and whoge boundary is essential in F

as required.

Corollary 3.2 Suppose that M3 is compact, K 1is a simplicial complex
with a principal l-simplex with midpoint v and nz(K) =0 . Then
given a map f : M+ there is a PL map g: M*K homotopic to f

which is transverse to v and such that g_l(v) is incompressible in M.

Remark As g is transverse to f , g_l(v) is compact, and 2-sided and
properly embedded in M

Proof of Coroilary 3,2. First we can homotop f to be PL and transverse

to v . MNote that this is avvery trivial itransversality result. In fact,
one has only to choose 'a point v° in the interior of the principal 1-
simplex which is not the image of a vertex of M s When M 1is triangulated
so that f is PL . One can arrange v =v but this is unimportant.

Now consider f_l(v) . If -f-l(v) is incompressible we are done.
Otherwise Corollary 3.1 gives us D2 lying in the interior of M with
D2f1f_l(v) = aD2 a cirele essential in f_l(v) . As WE(K) =0, we
can homotop D2 medulo aD2 so that D2 maps entirely to v ., One
can now describe a homotopy of f , fixed ocutside a regular neighhorhood

of D , toamap g with g_l(v) equal to f_l(v) surgered
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upon by D . ie, g-l(v) is obtained from f_l(v) by removing a
regular neighborhood of aD° in f_l(v) and adding two 2-discs

parallel to D . We say the homotopy induces surgery by D .

This process of surgery reduces the number % (2—X(FE))2 , Where
the summation is over all components of f_l(v) . As f_l(v) is
compact, this rumber is finite and so the process must terminate.
At this time, we will have the required map g

We now come to the first splitting theorem which was proved by

Stallings [29]. We give his proof.

Kneger's Cenjecturs

I 1 is closed and m (M) = A * B , then M = M #M, with

l( 2

nl(Ml) = A and ﬂl(Mé) =B .
Proof: We may assume A and B are non-trivial or the result is obvious—
and uninteresting.

As before, let K be a K(A * B,1) built out of a KE{4,1), kK(B,1)
and & l-simplex with midpoint v . A4s n2(K} = 0 , there is & map
f : M*K inducing an isomorphism of fundamental groups. By Coroliary 3.2,
we can homotop f so that f is transverse to v and f_l(v) is
incompressible in M . Iet L be g ccmponent of f_l(v) . L must

be a closed surface. The commutative diagram

nl(L) -+ nl(M)

J !

(1} = n (v) + ny (B)

consists of injections, so we deduce that ﬁl{L) is trivial and L is

a Z2-sphere.
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Ir f_l(v) is just one 2-sphere, the result is clear. Otherwise,
we will shoy how to homotop f so as to reduce the number of components
of f-l(v) by one. Eventually one will arrive st a map g with
g_l(v) equal to ome 2-sphere. Observe that f“l(v) cannot be empty
as 4 and B are non-trivial.

Now suppose f_l(v) has at least two components. We proceed by
the method of arc-chasing again, First choose a path I~ Joining two
distinet components of f_l(v) - As before, we can arrange that
£(I'’) is a mull-homotopic loop in K based at v . As we are now
in a 3-manifold, we can frther make I'" embedded and transverserto
:E‘_lzv) - Now arguing as before, we obtain a subpath T of IT”

joining two distinct components 81,82 of f‘l(v) and meeting no
other components of f_l(v) « Further ' will meet Sl and 82

only in its endpointsand f£(I) is a loop based et v which is null-
homotopic; Now, in a similar way to the proof of Corollary 3.2, we

can homotop f s0 as to induce surgery on f_l(v) by I . Thus

Sl and 82 are replaced by SI#SQ where the connected sum is obtained
by using the boundary of a regular neighborhood of T . This reduces

the number of components of f_l(v) by one as regquired.

We now want to generalize this result to the situation where a closed
marifold M is obtaired by gluing together two surfaces, not necessarily
spheres. We will need to assume that the surfaces are incompressible.
Thus nl(M) is of the form A *B or A *o where C is the funda-
mental group of a surface. We will keep to the orientable case now as
this substantislly reduces the amount of work needed. For the non-

orientable case see [23]. We need to quote the following classical

result due to Baer and Nielsen. This result is the 2-dimensional
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analogue of Waldhausenfs result and is most easily proved by the
analogous proof to the one we present here for Waldhausens theorem.

Of course, this 2-dimensional analogue is much easier to do.

Theorem 3.3

Suppose M2 , N2 are compact and orientable and M is not 82
or D2' . If f: M*N is a proper map injecting fundamental groups

then f is properly homotopic to a map g such that
a) g is a covering map,
. or b) g(M)caN . In this case M must be Slx 1.

We also need the following result, which though trivial appear® not

1o be well known.

1 be a closed orientable manifold in the interior

Lemma 3.4 Let ¥
of the orientable manifold M® . Denote by [F] a generator of
Hn_l(F,Z) 2 Z . Then if [F] is non-zero in Hn_l(M,Z) , it is alsc

indivisible. 1i.e.the egiation [F]=ro , o GHH_I(M) , implies r is

lor-1.

Proof: If F falls to separate M , we can find a circle in M
cutting F transversely in one point. This circle represents an
element of Hl(M) whos e Intersection mumber with '[F] is 1 or -1.
The result follows as intersection ﬁumbers define a homomorphism.

If F separates M into X and Y , then neither X nor Y
can be compact with boundary F , or we would have [F] being zero

in Hn_l(M) . Therefore, we can find a path cutting F +transversely
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in one point and ending either in some boundary component of M or
'at infinity'. The same argument now applies using if necessary
homology with infinite chains and cohomology with finite chains.

We can now prove the following result, first proved by Feustel
[6] and Swarup {30]. The proof we give here seems easier then theip

proofs,

Lemma 3.5 Let M3 be irreducible and orientable and let F2 be a
closed incompressible surface in M which is not 82 . If
nl(F)c:Gcrnl(M) » where G is isomorphic to the fundamental group of

a closed orientable surface I, , then G = nl(F) .

Remark: This result is false in the non-orientable case. TFor example

take F=aM where M 1is a non-trivial I-bundle over I . However

this is essentially the only counter example.

Proof of Temma 3.5 1Ilet N be the covering space of M determined by

Gem (M) . Our embedding of F in M 1ifts to § . s n (F) 1s

infinite, so is wl(M) » and M is aspherical. Therefore N is also

A i f
. aspherical and so is homotopy equivalent to I . 30 we have FINIL

where f is g homotopy equivalence. Now foi is homotopic to a
covering map of some finite degree r , by Theorem 3.3. Hence
i,z ZEHz(F)*Hz(N)EHzl;L)EZ is multiplication by r ., Lemma 3.4 now
tells us that r is 1 and hence G = nl(F) as required,

This result is what we need to ﬁ?ove the following splitting theorem
using the same ideas as in Stallings proof of Keser's Conaecture. This

Tesult has also been proved by Feustel [7].
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Theorem 3.6  Let M3 be closed, orientable and irreducible and suppose

m (M) = A *,B, where C 1is not equal to A or B and C is

1
isomorphic to the fundamental group of a closed orientable surface F .

Then there is an incompressible embedding of F in M separating M -

into M; and M, with nl(Ml) = A, Trl(MQ) =B, and nl(F) =0 .

Remarks F camnot be a 2-sphere. For Kneser's Conjecture would then
show that M is not irrducible. The hypothesis that L be orientable
i can be removed. In fact, this result is true in the non-crientable
case if we suppose M 1is P2-ir:reducible. Also the analogous result

is frue when L fails 10 separate M . The hypothesis then is that

nl(M) =4 ¥, . Neither of the hypotheses that M be irreducible and

C be isomorphic to '{Tl(F) can be removed.

Proof of Theorem Let K be a K(4 %o B,1) constructed by taking K(4,1),

K(B,1) and FxI and mapping Fx{0} into K(A,1) , Fx{1} into K(B,1)
suitably. (Note that the resulting space K is aspherical precisely
because C injects into A and B . To see this, consider the yniversal
covering space of K , .which looks rather like a graph, with a contractible

space at each vertex.) As nz(K) = 0, there is a map f: M*K inducing

an isomorphism of fundamental groups.
We can suppose by the methods of Corollary 3.2 that f 4is transverse to

* Fx {1/2} and fﬂl(Fx{l/E]) is incompressible in M . Observe that f_l{kal/E})

cannot be empty now or later as 07_! A and Cy—’ B
Suppose f_l(Fx{l/Z}) has a component & which is a R-sphere. Then
S bounds a 3-ball in M . As TTB(K) = 0, we can homotop f =s0 as to
remove S , and possibly some other spheres, from f_l(Fx{l/.?,}) .
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Therefore we can suppose that no component of f_l(Fk{l/Q}) is a
2-sphere. Let L be a component. We have nl(L)c:f;l(nl(F))c:nl(M)
and we deduce from Lemma 3.5 that m, (L) = f;l(nl(F)) . It follows
that we can homotop f so that its restriction to L is a homeomorphism
onto F

If f_l(Fx{l/é}) consists of one copy of F , the result follows.
Otherwise we will show how to homotop f so0 as to reduce the number
of components of f'lﬁk{l/2}) by 2 . By repeating this process we
mist eventually get the required result.

Now suppose that f_lGhil/é}) has components Flyeee,F with
n22 . We can still apply Stallings' method of arc~chasing, but the
conclusion is slightly different. We start by choosing & base point
e in Fx{1/2} and corresponding base points e; in Fi with f(ei) = e,
Now choose & path [ jolning distinet components of f_l{Fx{l/Q}), chegen
so that [ only meets F, in e, , for each i . As before, we
can arrange that f(I'') is a null-homotopic loop in X based at e .
We can also arrange that T is’transverse to each Fi . As before,
we can obtain an equation By =ev B = 1 in nl(K) = A *CB where the
g;'s alternately lie in A and B . From this we deduce that some
g; lies in C = nl(Fx{l/é}) . By compoging the path I; Jjoining F,
to F2 say with a sultable loop in F1 we finally obtain a path T
in M joining Fl and JFZ and meeting no other components ofﬁflfo{l/Q})
such that f{I') is a rmull-homotopic loop in K based at e .

Cut M along f_l(FXEVb]) and let X be the component which
contains ' and of course has F1 and F2 in its boundary. Observe

that X must beirraducible as M is irreducible and 3¥ is incom-

pressible in M . Also the existence of I implies that
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ﬂl(Fl,el) = nl(FE’el) if we use T to define the second group. I

claim that this implies that aX = FlLJF2 and that the natural meps
ﬁl(Fi)"'ﬂl(X) are isomorphisms. We will prove this below. Assuming

this for the moment, we know that X 'looks like! FIX'I . As the

maps wl(Fi)-*ﬂi(X) are isomerphisms, we obtain an isomorphism
ﬂl(Fl)-*nl(Fz) . The corresponding map F,*F, is homotopic to &
homeomorphism by Theorem 3.3, Therefore we have two embeddings of

Fl in X with images Fl and F2 and ¥y construction they are homotopic.
This gives us a homotopy equivalence F1X‘I-'X which induces & homeomorphism
of boundaries. Hence theres is alsc a homotopy equivalence X-*Fl x I

which induces a homeomorphism of boundaries. Now we have two maps of Fl
to Fx{1/2} , one is f and the other comes from f[F2 and our chosen
hevmeomorphism Fl-*F2 . These two maps are homotopic as they induce the
same isomorphism of fundamental groups. Hence they can be extended to

a map leI-*Fk{l/Q} . We can now construct a map g : M*X so thet

g equals f outside X and g(X) =F, by using the homotopy eguivalence
X-'leI . But as. M and K ere aspherical, g must be homotopic to f
because they induce the.same map of fundsmental groups. By a small further
homotopy of f we can remove X from f_l(Fx{l/é}) s and this achieves
our goal of reducing by 2 the mumber of components of f_l(Fx{l/é}) .

This completes the proof of the splitting theorem apart from the following

result,

Lemmg 3.7

Let X be a compact, orientsble,irreducible 3-manifold and let Fl
and F2 be two incompressible boundary components of X neither

of which is 82 + Let T beapath in X joining points ¢, in F, .
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Ir T'rl(F s8.) = ﬂl(FE’el) when we define the second group using T s

1)
then X = FllJFb and the natural maps wl(Fi)-'nl(X) are ismorphisms.

Proof: Let i be the covering space of X corresponding to ﬂl(Fi’el)C:

m(X,e;) . Both P, and F, 1ift to X . How consider the exact

sequence HB{E, )+ HX) $ Hy(X) . Ve know that H,(X) has rank ore,

because X is homotopy equivalent to F, . We also know that HQ(BX)

has rank at least two and H (%,aXJ has rank zerc or one. It follows

3

that Ha(i,an}'[) hag rank one and H2(a;() has rank two. Hence X is

compact and of = FlLJFé . The result follows 2s we must have X = X .
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dhapter I¥ Waldhausen's results

Before stating and proving Waldhausen's results, we must discuss
sufficiently large 3-manifolds., Iet M be a compact, orientable,
irreducible 3-manifold with non-empty boundary. If Hl(M) is finite
then oM consists of 2-spheres and so M = D3 . S0 we consider the
case when Hl(M) ig infinite. Note that in this case MK must be
aspherical as ﬂl(M) is infinite.

In the exact sequence HI(M)EHl(aM)-%HE(M, M) , the homomorphisms
f and g are dual maps. This can be seen from Poincard duality in
M and 3M . If g were injective, then ker(g) would be trivial.

I

Hence so would coker(f) be trivial. Thus F would be omto and so
g. would be zero. This would imply Hl(aM) =0 . Hence g must
have kernel, and there is a in Hl(M) with f£{a) non-zero in Hl{aM)
Corresponding to « » we have a map p : M-'S1 s which we make transverse
to a point v of Sl « By the usual argument, we can arrange p_l(v)
is incompressible in M - Now the homology class in Hl(aM) of
a(p_l(v)) is equal to the dual of f{a). As f(a)#¥0 , there is a compcnent F
of p—l(v) such that the homology class of aF in Hl(aM) is non-zero,
In particular, F fails to separate M

Une can apply the same argument to Mi » which is M cut along T,
to obtain a sequence of incompressible surfaces and 3-manifolds. In his
paper [35] Waldhausen shows that if one chooses the surfaceswith rather
more care than we describe here, then the sequence terminates. Thus

one obtains a sequence of 3-manifolds Mi and incompressible surfaces Fi

in Mi such that M.

141 equals Mi cut along P& ) Mbr M and Mﬁ is the
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3-ball for some n . We say that M has a hierarchy.

We say that a closed orientable, ipreduecible 3-manifold M is

sufficiently large if M contains an incompressible closed surface

F not 82 . By cutting M along ¥ , we obtain one or two irreducible
3-manifolds with boundary and so M itself has a hierarchy with first

surface F . TFor cawverience we say that any erientable, irreducikle

3-manifold with non—trivial boundary is sufficiently large.

Examples of closed, orieuntable, irreducible 3-manifolds which are
not sufficiently large do exist [4] but all the known examples have
a finite covering space which is sufficiently large. It is not known

if this must always be so. Observe that the second splitting theorem

‘of Chapter IIT shows that M must be gufficiently large if n,(M) is

1
an appropriate amalgamated free product. Also if Hl(M) ig infinite

then M must be sﬁfficiently large. This is because Hl(M) is non-
zéro, 50 we can {ind an essential map f : M-*Sl . If we chovse v
in Sl we can hemotop £ so that £ ig transverse to v and f_l(v)

is incompressible in M . Now f_l(v) cannot be empty and all 2-

~ sphere components can be removed ., Thus some component of f_l(v) is

. . T QR
an incompressible surface not S .

Now we can state and prove the following results,

Theorem 4.1 Suppose that M3 s N3 are compact, orientable and irreducible
and N’_is sufficiently large . If f ; M#N is a proper map, which
induces an isomorphism of fundamental groups and induces a homeomorphism

of 3 dinto JN , then f is properly homotopic to a homeomorphism

modu;o aM .
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Remark In fact, one must have f(3M) = agN as aM Bounds in M ,

but no proper subset of N bounds in N ,

Proof of Theorem 4.1 This is by induction on the minimal hierarchy

length for N , say 4(N) .

If 4{N) =0 , then N2 D3 . Hence nl(M) is triviel and M= D3
also. 7The result follows..

To do the induction step, we have two cases.

Casel N dig closed.

Observe that in thiscase, M must also be closed. Let F be the

I

. closed incompressible surface in N which starts the Hierarchy for N

Then nl(N) is of the form A *B or A ¥, where G = ﬂl(F) . Also

¢
N is aspherical. The methods used to prove Theorem 3.6 show that we
can homotop f so that f maps f_l(F) homecmorphically to F . Thus
if we cut N along F to get N, and M along f_l(F) to get M, ,
we have £ : Ml-'Ni which satisfies all the hypotheses of our theorem.

Thus applying our inductior hypothesis to the {one or two) components of

Ml and Nl gives the required result.

Case 2 N has boundary

Let F be the incompressible surface in N which startsthe hierarchy
f&f N . We know that the homology class of 3dF in Hl(aN) is non-zero
so that in particular, F ‘has boundary. We homotop f{:M-+*N modulo M
N

to be transverse to F , and so that £ (F) is incompressible in M

We also arrange that f_l(F) has no 2-sphere components. Let L be a
component of f_l(F] . The map L-F induced by f is proper and injects

m, and is a homeomorphism of 3L into 3F ., If follows that this

1
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map is homotopic to a covering map. But then this map must be a
homeomorphisﬁ, as it induces a homeomorphism on 3L . As L now
contains all of f_l(aF) , we see that f_l(F) must heve only one
component L mapping homeomorphically to F . As in Case 1, this
allows us to use our induction hypothesis and prove the required
result.

It is interesting to point out that in the case when M and N
do have boundary, the above result does npt use Stal%ings'arc—chasing
method. The only'resultsmneeded rre e Lo?p Theorem and the Sphera
Theorem and of course the existence of a hierarchy for N . We can now

prove the following result. Many people have proved closely related

results, the first being Stallings in [26].

Corollary 4.2 (the h-cobordism theorem)

Ir X isirreducible, orientable and compact and Wl(X) is isomorphic
to nl(F) where F is a closed orientable surface not 82 , then

X=EFxI .

Proof: X 1is homotopy equivalent to F , hence HB(X) = 0 . Therefore
X 1is not closed. Also no component of dX ecan be a 2- sphere as

this would imply X = D’ ., Let L be a compoment of aX .  Tf L
were compressible in X , we would Héve a Z2-disc D din X with
boundary an essential circle in L . Now nl(X) cannot be a non-
trivial free product, so D must separate X s+ and one component of
X-D must be a ball. But thern 3D must bound a 2-disc in L after

all. We deduce that I must be incompressible irn X .




—28.

Now Lemma 3.5 tells us that ﬂl(L) = ni(X) » and, in particular,
L is homeomorphic to F . As before,the exact sequence HB(X,aX)*
HZ(BX)-*HékX) shows that 3X has exactly two components F, and F, .
This tells us that there is a proper homotopy equivalence FxI +X
which induces a homeomorphism of boundaries. The corollary now follows
from Theorem 4.1.

Armed with this Corcllary, we can now extend Theorem 4.1.

Theorem 4.3 Suppose that M3 3 N3 are compact, orientable and irr-
educible, N is sufficiently large, and oM and 8N are incompressible
in M and N respectivély. If £ : M+*N is a proper map inducing an

ismorphism of fundamental groups, then f is properly hometopic to a

map g such that

(i) g is a homeomorphism,

or (ii) g(M)<dN . In this case M and N are homeomorphic

to Px 1 for some closed surface T .

Proof: If aM is empty, the result follows by Theorem 4.1. Otherwise
let L be a component of 3 and F be the camponent of alN such
that f{L)cF . 4as L and F are incompressible, we have nl(L)C:

-1 -1

M (ﬂl(F))c:ﬂl(M) and we deduce nl(L) =f, ﬂl(F)) . Hence we can

f
homotop f so that for each component L of aM , ¢ maps L
homeomorphically onto some component of 2N .

Suppose that two components L1 and L2 of M have the same
image. Choose a path T in M from L1 to L2 + By composing T

with a suitable loop in M , as usual, we can arrange that f{(T') is a
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mill-homotopic Ioop in N based at some point of N . Hence, from
Lemma 3.7 and Corollary 4.2, we see that M= le I . Also Corollary 4.2
tells us that N = L1><I » Clearly, we can homotocp £ into AN, to
obtain case (ii) of our theorem.

Otherwise, we can suppose that f induces a homeomorphism of aM

into aN. Thus we can apply Theorem 4.1 to obtain case (i) of our theorem,

Finally, we can extend this result to the following which is Waldhausen's

general form of the result.

Theorem 4,4  Suppose that M3 s N3 are compact, orientable and
imeducible, N is sufficiently large, and aM and oN are incompressible
in M and N respectively. If f ; MON is a proper map inducing an
injection of fundaméﬁtal groups, then f is properly homotopic to a map

g such that

(i) g€ 1is a covering map,

or {ii) g(M)cal . In this case M ig homeomorphic to Fx I

for some closed surface ¥ .

Proof: Let W be the covering space of N corresponding to f, (m (M))c:nl(N) ;
Note that N may not be compact. The map f 1ifts to . M~ N which
is & proper map inducing anismorphism of fundamental groups. Also éﬁ
is incompressible in E

If M is closed, then so must E be. For ; : MF'E is a homotopy

equivalence, so HB(N) = HB(M) + Therefore Theorem 4.1 applies to give us

the required result.
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let L be a component of 3M and F the component of 3N with
}(L)C:F . Then ﬂl(L}c:%;l(nl(F)). It follows that F must be
closed and that nl(L) = };l(nl(F)) . Hence we can homotop f so
that for each component L of M , f maps L homeomorphically
onto some component of aﬁ .

As before, if two components Ll 5 L2 of ®M have the same image
then M= le I , and we can homotop ¥ into N obtaining case (ii)
of our theorem. Otherwise we must have } inducing a homeomorphism of
aM onto N . Again this is because M boundsin M but no proper
subset of éﬁ bounds in N . In particular aﬁ is compact and s0
must be a finite sheeted covering space of 3N . Therefore N is
also a finite sheeted covering space of N and so N must be compact.
Theorem 4.1 applies to give case (1) of our theorem.

Note that in the above we assumed that ﬁ was irreducible. This
is correct as Waldhausen showed in [35] that the universal covering
space of N is D3 with some boundary removed which is irreducible,
and any manifold covered by an. irreducible manifold is also ir?educible.

However it is not known in general whether any covering space of an

irreducible manifold is irreducible.
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Chapter V The coherence of nl(MB)

We say that a group G 1is goherent if every finitely generated
subgroup of G is finitely presented. In thig chapter, T will Present
the proof that the fundamental group of any 3-manifold is cohkerent.
This result was proved by myself and by Shalen independently using
similar methods., One-corollary of this result is that any Kleinian
group is coherent. The result also has many applications to 3-manifold
theory.

Some groups which are not coherent are easy to describe. We will
give an example here. Let A be the free group on two generators a,b
let B be the free group on two generators c,d, and let ¢ be the
free group on countably many generators. We embed C in A and B
as the subgroups generated by {b_iab i} and {d_icdi} respectively.

i>1 ir1
The group G = 4 *CB is clearly generated by a,b,c and d s but G
is not finitely presented. This is becanse HQ(G) is not finitely
generated, which can be proved easily using the Mayer-Vietoris exact
homology sequence of A *CB « (This sequence is exactly the sequence
associated to a corresponding union of K{(n ,1)'s yherse 1 = 4,B,C.)
It is also interesting to observe that G can be embedded in a finitely
Presented group H , Let ¢ be the automorphism of G defined by
#(a) = b-lab, g(b) = b, g(c) = d”lcd, #{d) =d . The corresponding
extension H of ¢ by 7 has presentation
H= {a,b,c,d,x:[x,b] = 1 = [x,4], * Lax = b_lab, xnlcx:dhlcd,b—lab:d_lcd} s
and so is finitely presented.

The proof of the coherence result falls into two parts = group

theory and geometry. We first do some group theory. The idea behind the
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result is the feeling that if cme takes a free product A ¥ B and

adds a relation, such as a = b where a€h , b€B, the result is

11ess free! then before. However, this feeling must be made much more

precise. For the group [x,y:x2=y2} has non-trivial centre and so is

not a free product, but if we add the relation XZ: 1 we obtain Zz*Z2 .
We define the complexity c¢(G) of a finitely generated group to

be the ordered palr (r+s,s) where G = Gl*...*Gr*FS where each G

is indecomposable and not jgsomorphic to Z . These pairs will be

ordered lexicographically.

Theorem 5.1 lLet H = Hl*...%Hr+s where each Hi ig indecomposable
and only Hr+l"'°’Hr+s are isomorphic to 2 . If f: H=+G is an
epimorphism such that f injects each of Hl""Hr then f 1is an

isomorphism or c(G) <c(H)

Remark This result is a corollary of the main theorem of Higgins in
f9] , using the methods by which he deduces Grusko's theorem. However,

we will present a topological proof using Stallings methods.

Proof: G is finitely generated and so G = Gl*...*Gn where each
G, is indecompoéable. As f(Hi) is indecomposable, for 1Li<r ,
we hnow that f(Hi) lies in a conjugate gzlngi of some Gj , by
the Kuros Subgroup Theoren.
As in Stallings! proof of Grusko's theorem, we construct simplicial

complexes X and Y whose fundamental groups are H and G respectively.
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For each free factor Hi of H choose & complex Xi with fundamental'
group Hi and,choose a vertex v; of Xi . If HiEEZ s we choose Xi
to be a circle. Attach a l-simplex P. to Xi by identifying one end-
point to v, -« We identify all the remaining endpoints of P ’Pr+s
to a single point g » the base point of X . We construect Y similarly
as & union of Yl""’Yﬁ and l-simplices Ql""Qn and Y has basepoint
b.

We can now choose a map h:X+ Y indueing f:nl(X,a)4nl(Y,b) such
that if 1<i<r, then h(X.) is conteined in some Yj and P, ig
mapped to a path consisting of a loop based at b repregenting g; com-
posed with the path Q - Further, by subdividing X and ¥ and per-
forming homotopies of h we can arrange that h~ {b) consists of only
finitely many points., This last condition is crucial, as it allows one
to apply the method of arc chaging as in Stallings' proof of Grusko's
theorem. Thus, by changing X » We can arrange that h-l(b) is a tree
and hence H haé.a facforisation K *.,.*K  such that f(X.) = q.

1 n i it

Now we suppose that c(G)>c(H) and prove that f 4ig an isomorphism.

-

As nzr+s, the unigueness of factorisation theorem tells us that

N=r+s and we can suppose Ki; H, with K, conjugate to H o if 1<i<r,

We know that ¢ injects Hi if 1<idr ,s0f also injects Ki if 1<i<r.

Hence f maps Ki isomorphically to Gi - The remaining s factors
GI__I_]_,...,G-r+s are all cyclic as each Gi is & quotient of Ki and cur
assumption that c(G)ggc(H) implies that each must be isomorphic to 7 ,
Hence the restriction of f +to each Ki is an isémorphism onto Gi and so
f is an isomorphism., This completes the proof of the theorem.

For the purposes of the geometrical part of this result, we make the

following definition, A submanifold N3 of M3 is incompressible if 3l is

incompressible in M » The geometrical method we use here was

B N A s
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first used in [8] and [31] .

Theorem 5.2 If G is the fundamental group of a 3-manifold M , then

G 1s cohereat.

Proof: As any subgrdup of G is also fhe fundamental group of a 3-
manifold, it will suffice to prove that 1f G 1s finitely generated-
then G must be finitely presented. We shallprove this by induction
on the minimal number of generators of G . The result is obvious if
G is cyclic.
Suppose we have already proved our result for r-generator groups
" vhere r<n , and suppese G 1is a n—genérator group. (We use 'n-generator’
to mean that n is the minimal mmber of generators of G ) If G
is decomposable, then each factor will have less than n generalorsand

the result follows by induction., Therefore we suppose G 1is indecomposable.

Lemma 5.3 Let G be a n-generator indecomposable group such that every
subgroup with less than n generatorsis finitely presented. Then
there is an indecomposable finitely presented group H and an epimorphism

f : H#G such that if A is an intermediate quotient of H then B

is also indecomposable.

Proof: Let S be the set of all finitely presented n-generator groups
4 which admit a free factorisation A = Al*...*Aj? and an epimorphism
f : A*G injecting each factor which is not isomorphic to Z . S is
non-empty as it contains Fn . We choose a group A in S of minimal
complexity. We will show that if f : A+ G factorsthrough a group B

not equal to A then B is indecomposable. The lemma will then follow

by taking H to be A with one relation added. (One can do this unless




35—

f is an isomorphism but then we will already have shown G 1o be
finitely presented.)

Suppose that f factors through a group B which is isomorphic
to a non-trivial free product Bl*B2 . The images Cl and 02 of
B. and B, in G each have less than n generators because B1 and

1 2

B2 have. Hence G1 and 62 are both finitely presented and so B

has a finitely presented quotient C = Cl*C2 through which f still
factors. Now C has a factorisation obtained by factoring Cl and
02 and so every factor of C is injected intc G . Hence C 1lies

in the set S . Hence c(C) > ¢(A) by the choice of A , and Theorem 5.1
impli;s that C =4 and so B = A vwhich is the required result.

Using the group H obtained here, we can now complete the proof of
the coherence result. Let K be a finite simplicial complex with
fundamental group H and let ¢ : K*M be a piecewise linear map in-
ducing the epimorphism f : Wl(K)"ﬂl(M) . Let N %be a regular neigh-
borhood of @¢(K) and let A = ¢(ﬂ1(K))C:ﬂl(N) . Let i : N*M be the

inclusion map. Then N is a campact submanifold of M which satisfies

the following condition, because A 1is an intermediate quotientof H .

Condition (*) ﬂl(N) contains an indecomposable subgroup A such that

i,: A+ G 1is onto and any intermediate quotient of A is indecomposable.

If N is incompressiBe in M , then van Kampen's Theorem and
Condition (*) imply that nl(N) = ﬂl(M) . As N is compact, nl(N)

is finitely presented which proves the required result.
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If N is compressible in M , then Corollary 3.1 of the Loop
Theorem gives us a 2-disc D embedded in M such that DN aN = aD is
an essentialjcurve in 3N . If D is not contained in ¥ , we replace
N by N” which is obtained from N by attaching a 2-handle whose core
is D . N° also satisfies Condition (#) , the appropriate subgroup of
ﬂl(N') being the image of A , under the natural map ﬁl(N)-*ﬂl(Nj) .

If D 1is contained in N , we have two cases according as D separates
N or not.

If D separates N , then N =N UN, and m(N) = m{N)*n (1) .
The subgroup A of nl(N) is indecomposable and not isomorphic to 2
and ‘so lies in a conjugate of nl(Nl) say. We replace N by Nl ,
the appropriate subgroup of nl(Nl) being the conjugate of A which lies
in nl(Nl) . If D fails to separate N , then nl(N) = ni(Nl)*Z
and we must have a conjugate of A4 lying in ﬂl(Nl) . Again we replace
N by Nl .

We have shown how to replace N by a new manifold N’ also sat-
isfying Condition (*) if N is compressible. We repeat this process as
long as possible. As in.Corollary 3.2, E(2-xi)2 mist decrease at
each step where the summation is over all components of 3N . Hence
this process must terminate and we will then have obtained an incompressible
submanifold of M satisfying Condition (*), This completes the proof
of the coherence result.

To finish off this series of lectures, I would like to discuss the
following question which is suggested by the proof of the coherence result.
This proof shows that if ﬂl(M) is finitely generated and indecomposable,
then there is a compact submanifold N of M with the natural map

m M) an isomorphism. In fact, this result is still true if we

L) 7 (
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remove the restriction that ni(M) be irdecomposable [25] , This
raises the qQuestion of whether an open manifold M with finitely
generated fundamental group is the interior of a compact 3-manifold or
more generally whether M ig obtained from a compact manifeld N by
removing a closed subset of oN . Such a manifold M is said to be

almost compact. The answer to this guestion ig negative, because of

Whitehead!'s example of an open contractible 3-manifold not R3 [32].
Tucker has given a characterisation of almost compact 3-manifolds [33].

This suggests that we ask whether M is almost compact if we also
assume that the universal covering space is RB . The ansvwer here is
stillxnegative, and the first counter example was given by Tucker [241. we
will give an example which is even simpler than Tucker's, though it is
also less interesting.

In R3 » take a plane 7 and s disjoint path £ from some point P
out to infinity which has infinitely many knots in it. See Fig, 1. The
boundary 7’ of g regular neighborhood of 1 is homeomorphic to R2
et X be the closed region of B between M and 77° ang construct
M from X by identifyipg T and T by a homeomorphism., Then nl(M) =z
by van Kampen's Theorem, and X has universal covering space R3 . To
see this second fact, we use the faet that RB is characterized by the
property that every compact subset lies in the interior of a 3-ball. Finally
let L be an embedded straight line patﬁ from P to 7 . Then Wl(X-L)
is not finitely generated as it is an infinite amalgamated free product
of non-trivial knot groups. Therefore nl(M-L) is also not finitely
generated. Therefore M is not almost compact. For as everything is
PL, nl(M-L) equals nl(M-U) where U is a regular neighborhood of

L and if M were aimost compact so would M-U be.
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) is shown dotted

Fig. |
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It is interesting to note that the interior of X is homeomorphic
to R7 but X itself is mot RPx 1 | This is an example of two
rlanes ‘Iinkipg"in 3-space. Note that any two planes in 3-space are
isotopic.

As a last ditch possibility, one asks whether M is almost compact
assuming that the universal covering space of M is Ri s but Tucker fjA]
has an example which disposes completely ofrthis question also. Of course
wl(M) = nl(aM) 1s a surface group on this case, His initial example
is of a 3-manifold N with universal covering space Rf and ﬂl(N) =7,
but ‘N is not almost compact. Note aN must be homeomorphic to Slx R .
Now choose any compact irreducible crientable 3-manifold M with non-
empty boundary. Waldhausen has shown that such a manifold has universsl
covering space consisting of the 3-ball with some boundary removed [35].
Tucker then glues M to N by identifying closed annuli in the boundary
of each which are incompressible in M and N respectively, The interior
Ml of the resulting manifold has universal covering space R3 but is
not almost compact.,

Finally, carry out Tucker's construction with M = FxTI , gluing an
anmulus in Fx{1] to an annulus in aN . TLet Ml be obtained by removing
all the boundary of this union except for Fx {0} . Then the universal

1

even the fundamental group of a closed orientable surface can 'act wildly!

covering space of Mi is Rf and M is not almost compact. Thus

3
on R+
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